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Abstract 15 

This paper presents a framework to evaluate the regional and local resilience of infrastructure networks following disruptions 16 
from natural hazards. Herein, the regional resilience of a network relates to the accessibility of a community within a larger 17 

network, whereas the local resilience concerns the ability of a network to provide its intended service within the boundaries of 18 
a community. Using this framework, a methodology is developed to demonstrate its application to a road and highway 19 

transportation network disrupted by ground shaking and inundation under a Cascadia Subduction Zone earthquake and tsunami 20 
scenario. The regional network extents comprise the entire coast of the state of Oregon, United States of America. Embedded 21 

within this regional network are 18 local networks associated with coastal communities. Regional and local connectivity indices 22 

are defined to identify the initial damage and then track the post-disaster recovery of the transportation network, i.e., evaluate 23 
the network resilience. Results identify the attributes that lead to a regionally or locally resilient network and highlight the 24 

importance of considering local infrastructure networks embedded within larger regional networks. It is shown that without 25 
regional considerations, the time to recover may be severely underpredicted. The methodology is further used as a decision 26 

support tool to demonstrate how mitigation options impact the transportation network’s resilience. The importance of 27 
strategically considering mitigation options is emphasized as some communities see significant reductions in time to recover, 28 

whereas others see little to no improvement.  29 
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Introduction 32 

Infrastructure networks, such as electric power, transportation, and communication, are essential for community function and 33 

resilience planning (OSSPAC, 2013; NIST, 2016); however, these networks are often evaluated without considerations given 34 

to the larger regional network that they are embedded within. That is, the network’s spatial boundaries are limited to the 35 

community’s spatial boundaries. Infrastructure networks do, however, span multiple spatial scales ranging from global 36 

accessibility, e.g., ship and airplane traffic, to traversing communities and neighborhoods, e.g., local roads and walking trails. 37 

Further, depending on the type of infrastructure network, different services can be identified. For example, a transportation 38 

network may be used to connect people to food sources (Coveney and O’Dwyer, 2009), health resources (Zhang et al., 2018), 39 

or post-disaster relief (Horner and Widener, 2011). Hazards, both natural and anthropogenic, can cause damage to network 40 

components, which translate to larger system disruptions and ultimately limit the ability of a network to perform it’s intended 41 

service (Crucitti et al., 2004; Buldyrev et al., 2010). 42 

When considering infrastructure networks under disruption from hazards, multiple spatial scales are of importance (Thacker et 43 

al., 2017; Zhang and Alipour, 2020). For example, following a network disruption, a community may be accessible at the 44 

regional scale, e.g., goods can reach the community boundaries; however, if the local network is in poor condition, then these 45 

goods cannot be distributed throughout the community. Conversely, if the local network of a community is in good condition 46 

following a disaster, but this network is not accessible to the rest of the region, then goods cannot be transported to the 47 

community, which in turn cannot be distributed throughout the local network. Thus, the extent to which a community is 48 

regionally or locally accessible is of importance.  49 

The purpose of this paper is to present a generalized framework to simultaneously assess the regional and local resilience of 50 

infrastructure networks following disruptions from natural hazards. This framework is used to identify the attributes that lead 51 

to the regional and local resilience of networks, to demonstrate the necessity of considering local networks embedded within a 52 

larger, regional-scale network, and to evaluate the impact of alternative mitigation options on network resilience. The 53 

generalized framework is intended to be expandable across infrastructure network systems; however, in this paper a 54 

methodology is developed to demonstrate how the framework can be applied to a road and highway transportation network 55 

subject to the multi-hazard earthquake and tsunami threat posed by the Cascadia Subduction Zone.  56 

The remainder of this paper is organized as follows: Section 2 outlines the framework in a generalized manner and draws on 57 

examples in the literature of how this can be applied across different infrastructure systems; Section 3 develops a methodology 58 

demonstrating how the framework can be applied to a road and highway transportation network; Section 4 presents results from 59 

the previous section and shows how the framework can be used to evaluate mitigation options; Section 5 presents a discussion 60 

of this work and identifies limitations; and lastly, Section 6 summarizes the conclusions.  61 
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General Framework 62 

Figure 1 shows the general framework developed to assess the regional and local resilience of infrastructure networks and is 63 

broken up into three primary steps. The first step consists of organizing and collecting data. Using network and hazard data, 64 

damages to the network components are then evaluated in step 2. The damages result in changes to network component 65 

functionality, which then determine how the network performs as a system in step 3. Regional and local resilience metrics are 66 

defined and tracked here, from which the multi-scale resilience can be evaluated.  67 

 68 

Fig. 1. Framework for assessing the regional and local resilience of infrastructure networks. 69 

The first step, data collection, consists of gathering (1a) resilience planning guides and policy, (1b) network data, (1c) service 70 

information, and (1d) hazard data. Resilience planning guides and policies inform the overall analysis and can aide in 71 

identifying hazards present within a geographic region, metrics that can be tracked, or services that infrastructure networks 72 

provide (SPUR, 2009; OSSPAC, 2013; NIST, 2016; New York City Emergency Management, 2019).  73 

Identifying the network (step 1b) consists of specifying an infrastructure network to consider and delimitating local and regional 74 

network boundaries. The latter is necessary to consider the problem under a multi-scale lens. For example, transportation 75 

networks may have regional boundaries connecting state to state (Omer et al., 2013), or local boundaries concerning 76 
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accessibility within cities (Dong et al., 2016; Dong et al., 2020). Further, different spatial boundaries impact ownership of 77 

infrastructure components. For example, a state may be responsible for bridges along a highway, whereas cities are responsible 78 

for bridges within city boundaries. 79 

Here, the term service refers to the service that the infrastructure network was originally intended to do (step 1c). Infrastructure 80 

networks can perform multiple services. For example, a transportation network can be used to move people from their place of 81 

residence to places that provide health assistance (Zhang et al., 2018). Similarly, the same transportation network may be used 82 

to provide accessibility from places of residence to places of work (Omer et al., 2011). As such, identifying the service of a 83 

network also consists of identifying origins and destinations that relate to this service. The service origin and destination are 84 

dependent on the network and vice versa.  85 

The hazard (step 1d) consist of defining an event that inhibits the network from performing it’s intended service (Ouyang, 86 

2014; Faturechi and Miller-Hooks, 2015; Sun et al., 2018). Hazards can be either natural, such as earthquakes (Chang and 87 

Nolima, 2001; Shiraki et al., 2007; Guo et al., 2017; Ishibashi et al., 2021) and hurricanes (Horner and Widener, 2011; Zou 88 

and Chen, 2020); or anthropogenic, such as intentional attacks (Wu et al., 2007). In the context of natural hazards, these hazards 89 

can often consist of multiple hazards which, if applicable, add an extra-dimension to the problem (Kappes et al., 2012).  90 

Step 2 of the framework, network component modeling and analysis, is the result of the hazard impacting the network. In the 91 

context of natural hazards, the hazard and network components are often combined via the use of fragility models (FEMA, 92 

2013; Cavalieri et al., 2014; Kakder and Argyroudis, 2014; FEMA, 2015; Gidaris et al., 2017). The use of fragility models 93 

results in the probability of network components being in or exceeding a damage state (step 2a). The damage states subsequently 94 

inform changes to the network component functionality and performance (step 2b). The component functionality influences 95 

the component performance. In the case of transportation networks, performance may correspond to an increase in travel time 96 

along roads and bridges (Shiraki et al., 2007), whereas in power networks may correspond to component failure (Ouyang and 97 

Dueñas-Osorio, 2014; Johnson et al., 2020). 98 

The entire network is then considered as a system in step 3. The performance of a network as a system depends upon both the 99 

individual component performance and network topology (Zhang et al., 2015). This system performance can further be 100 

evaluated at multiple scales, hence both the regional and local network performance steps 3a and 3b. The arrow between these 101 

steps identifies interdependencies between the two. Based on the network and service that are being considered, there may be 102 

either a one-way dependence, e.g., the local network depends on the regional network, or there may be a two-way dependence, 103 

e.g., the local and regional networks depend upon each other. Regional and local metrics are identified (steps 3c and 3d) to 104 

evaluate the performance of the network under multiple scales. The service origin and destination aid in identifying the local 105 
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and regional metrics (Logan and Guikema, 2020). Last, the regional and local metrics are used to inform the multi-scale 106 

resilience of the network (step 3e).  107 

Methods applied to a Transportation Network  108 

A methodology was developed to demonstrate how the generalized framework can be applied to a road and highway 109 

transportation network under disruption from earthquake and tsunami hazards. This section follows steps 1 and 2 of the 110 

framework shown in Figure 1.  111 

Hazard, Network, and Service Identification 112 

The North American Pacific Northwest is subject to the rupture of the Cascadia Subduction Zone (CSZ), which can result in 113 

both strong earthquake ground shaking and tsunami inundation. The last full rupture of the CSZ occurred in 1700 and is 114 

estimated to have had a moment magnitude between 8.7 and 9.2. Further, some studies have estimated a 7-11 percent probability 115 

of a full-margin rupture to occur between 2010-2060 (Goldfinger et al., 2012).  Local studies to characterize the hazard 116 

associated with the CSZ have resulted in probabilistic hazard maps (Gonzàlez et al., 2009; Park et al., 2017); whereas at the 117 

regional scale, the hazard has been characterized based on moment-magnitude. In this work, scenario-based hazard maps 118 

associated with the M9.0 earthquake and corresponding large, or “L”, tsunami were used (Madin et al., 2013; Priest et al., 2013) 119 

because this formed the basis of the Oregon Resilience Plan (OSSPAC, 2013). In the future, a probabilistic rather than a 120 

scenario-based approach could be considered as suggested by one of the reviewers. While a probabilistic seismic and tsunami 121 

hazard analysis (PSTHA) exists for a single community at Seaside, OR (Park et al., 2017) and has been used for several risk-122 

based damage studies (e.g., Park et al., 2019; Sanderson et al., 2021), there currently exist no PSTHA for the entire Pacific 123 

Northwest. 124 

The regional highway transportation network considered is shown in Figure 2 and stretches from the California to Washington 125 

state borders in the north-south direction and from the Pacific coast to Interstate 5 in the east-west direction. The entire 126 

transportation network consists of 2,644 km of roads. Highways were prioritized according to a tiered approach with Tier 1 127 

being a backbone that allows access to most major population centers, and Tier 3 providing access to all coastal communities 128 

(OSSPAC, 2013). The tiered structure of the transportation network is shown in Figure 2 and was used in this work when 129 

prioritizing restoration of highway components.  130 
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 131 

Fig. 2. Regional highway transportation network showing location of coastal communities, maintenance facilities, airports, and 132 

highway tiers. 133 

It was assumed that the role of the transportation network is to provide post-disaster aid to communities, and the location of 134 

airports are used as a proxy for supply sources. Thus, in relation to the framework in Figure 1, airports were identified as the 135 

service origins, whereas coastal communities were identified as the service destinations. A total of 29 airports were considered 136 

and grouped into three tiers as shown in Figure 2. If an airport was located outside of the transportation network, the nearest 137 
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node on the network is used as a representative point. It should be highlighted that other services such as fuel, food, health, or 138 

access to large metropolitan areas could be identified, although these are not considered in the illustrative example shown here. 139 

Furthermore, locations of transportation maintenance facilities are shown in Figure 2. Each coastal town is located within the 140 

jurisdiction of a single facility, and it was assumed that the reconstruction of local roads are dependent on the communities’ 141 

accessibility to their respective maintenance facility. The maintenance facilities are labeled A, B, C, and D. 142 

Within the regional network, 18 coastal communities were considered and are shown as pink dots in Figure 2 and summarized 143 

in Table 1. The 18 coastal communities were grouped into north, central, and south coast. The north coast communities are 144 

closer to metropolitan areas whereas the south coast is considered more rural. Local network boundaries were delimited by the 145 

urban growth boundary of each community, and some coastal towns that are near to others, such as Astoria-Warrenton and 146 

Gearhart-Seaside, were considered as one community for simplicity. The communities range in population from 954 people 147 

(Port Orford) to 25,881 people (North Bend-Coos Bay) (US Census Bureau, 2019). On average, the population of all 18 148 

communities is 6,234 people and there are 90.5 km of roads within each community. Information in Table 1, such as population 149 

and median income is supplied to provide a sense of the size of each community but is not used further in this study. Figure 3 150 

shows the local networks for three of the coastal communities: Cannon Beach, Newport, and Port Orford. The extent of tsunami 151 

inundation and the location of bridges and airports are shown.  152 

 153 
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Fig. 3. Example of three local networks for (a) Cannon Beach, (b) Newport, and (c) Port Orford. 154 

Table 1: Sociodemographic and transportation network summary for each coastal community and entire coast.  155 

Community Population 
Median 
Annual 
Income 

Number 
of nodes 

Number of 
edges 

Length Roads 
(km.) 

Assigned 
Maintenance 

Facility 

Astoria-Warrenton 15,385 $52,195 1,290 1,558 208.6 A 

Gearhart-Seaside 8,382 $51,729 710 885 103.0 A 

Cannon Beach 1,491 $50,846 323 392 38.1 A 

Manzanita-Nehalem-Wheeler 1,105 $49,922 449 555 62.3 A 

Rockaway Beach 1,166 $45,781 448 545 52.5 A 

Garibaldi-Bay City 2,472 $53,064 354 412 43.0 A 

Tillamook 5,231 $41,109 330 474 48.1 A 

Lincoln City 8,826 $39,344 950 1,179 140.3 B 

Depoe Bay 1,805 $57,143 195 222 22.4 B 

Newport 10,559 $49,039 959 1,186 135.8 B 

Toledo 3,579 $60,455 320 370 46.8 B 

Waldport 2,055 $47,971 211 250 29.1 B 

Florence 8,921 $42,356 905 1,119 137.3 C 

North Bend-Coos Bay 25,881 $50,905 1,653 2,107 240.9 D 

Bandon 3,100 $32,226 456 540 61.8 D 

Port Orford 954 $27,500 281 337 57.1 D 

Gold Beach 22,418 $42,625 284 321 49.2 D 

Brookings 6,431 $62,384 856 985 152.6 D 

Full Network  112,203 - 16,370 19,111 2643.7 - 

 156 

Probabilistic Network Component Analyses 157 

Road and Bridge Damage Analysis 158 

Using the hazard layers and transportation network, a probabilistic damage analysis was performed for both bridges and roads. 159 

Burns et al. (2021) conducted a multi-hazard damage analysis for bridges on the transportation network using, among others, 160 
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HAZUS fragility curves. The HAZUS fragility curves for bridges include 28 bridge classifications which, for brevity, are not 161 

presented here. Burns et al. (2021) concluded that the HAZUS landslide and liquefaction fragility curves tend to overestimate 162 

bridge damage. Therefore, only ground shaking from the earthquake and tsunami inundation were considered here. The 163 

resulting damage state probabilities were used in this study. 164 

The road damage analysis was conducted using HAZUS roadway fragility curves (FEMA, 2013; FEMA, 2015). Earthquake 165 

intensity measure was permanent ground deformation, whereas inundation depth was used for the tsunami. For consistency 166 

with the bridge damage analysis of Burns et al. (2021), landslides, lateral spreading, or liquefaction was not considered for the 167 

road damage analysis.  168 

The bridge damage state probabilities from Burns et al. (2021) were directly sampled in a Monte-Carlo simulation, whereas 169 

damage to the road segments were simulated according to the approach outlined in Baker (2008) and used by Kameshwar et 170 

al. (2019) and Sanderson et al. (2021) to estimate damage to the transportation network in Seaside, OR. That is, the probability 171 

that the damage state, DS, of each road segment exceeds damage state i was computed as: 172 

 𝑃𝑃(𝐷𝐷𝐷𝐷 ≥𝑑𝑑𝑠𝑠𝑖𝑖|𝐷𝐷) = 𝑃𝑃(𝐶𝐶𝑖𝑖 < 𝐷𝐷) (1) 

where D is the demand at the road segment, and Ci is the damage capacity associated with damage state dsi. The damage 173 

capacity of each road segment was simulated as a lognormal random variable, 𝐿𝐿𝐿𝐿(∙), computed as: 174 

 𝐶𝐶𝑖𝑖~𝐿𝐿𝐿𝐿(𝜃𝜃𝑖𝑖 ,𝛽𝛽𝑖𝑖) (2) 

where 𝜃𝜃𝑖𝑖 and 𝛽𝛽𝑖𝑖 are the median and dispersion parameters associated with the damage capacity of damage state dsi. The 175 

parameterizing medians and dispersion values are shown in Tables 2 and 3 for earthquake peak ground deformation (PGD) and 176 

tsunami inundation depth, respectively. Although correlation across road segments was not considered here, this could be 177 

accounted for by simulating a multivariate lognormal distribution (Yang et al., 2009).  178 

Table 2: Road fragility parameterization from Peak Ground Deformation (PGD).  179 

 Major Road Urban Road 

Damage 

State 

Median PGD (𝜃𝜃) 

[m] 

Dispersion (𝛽𝛽) 

[m] 

Median PGD (𝜃𝜃) 

[m] 

Dispersion (𝛽𝛽)  

[m] 

Slight 0.30 0.0178 0.15 0.0178 

Moderate 0.61 0.0178 0.30 0.0178 

Extensive 1.52 0.0178 0.61 0.0178 
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Complete 1.52 0.0178 0.61 0.0178 

Table 3: Road fragility parameterization from tsunami inundation depth. The median, 𝜃𝜃, and dispersion, 𝛽𝛽, are dependent on 180 

the flow speed, u. 181 

 Low Flow (𝑢𝑢 ≤ 1 m/s) Moderate Flow (1< 𝑢𝑢 ≤ 5 m/s) High flow (𝑢𝑢 > 5 m/s) 

Damage 

State 

Median 

inundation 

depth (𝜃𝜃)  

[m] 

Dispersion (𝛽𝛽) 

[m] 

Median 

inundation 

depth (𝜃𝜃)  

[m] 

Dispersion (𝛽𝛽)  

[m] 

Median 

inundation 

depth (𝜃𝜃)  

[m] 

Dispersion (𝛽𝛽)  

[m] 

Slight 0.67 0.12 0.48 0.15 0.42 0.15 

Moderate 1.28 0.12 0.91 0.15 0.80 0.15 

Extensive 2.07 0.12 1.48 0.15 1.30 0.15 

Complete 3.35 0.12 2.39 0.15 2.10 0.15 

 182 

A total of 1,000 iterations were performed resulting in discrete damage states for each road and bridge and for both hazards. 183 

The multi-hazard damage state was then computed using the Boolean logic rules outlined in the HAZUS tsunami methodology 184 

manual: 185 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸,𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇� (3) 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸,𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸, 𝐸𝐸𝑖𝑖: {𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑑𝑑𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸 𝑚𝑚𝐸𝐸𝑑𝑑  𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑑𝑑𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸} (4) 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸,𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸, 𝐸𝐸𝑖𝑖: {𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸 𝑚𝑚𝐸𝐸𝑑𝑑  𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸} (5) 

Where 𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸 and 𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇 are the discrete earthquake and tsunami damage states associated with each Monte-Carlo iteration. For 186 

bridges that lie on a road segment, the bridge damage state is assumed rather than the underlying road damage state. If multiple 187 

bridges were located on a single road segment, the maximum damage state of the bridges was used.  188 

Restoration and Functionality 189 

The restoration and functionality of roads and bridges were computed using HAZUS restoration curves, which are represented 190 

as a normal cumulative distribution function (CDF) and parameterized via a mean and standard deviation. Functionality is 191 
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defined as the percentage of the component that is expected to be open or operational (FEMA, 2013). Restoration curves 192 

indicate the functionality of road segments and bridges as a function of time and were computed as:  193 

 𝑖𝑖(𝐸𝐸) = Φ�
𝐸𝐸 −𝜇𝜇𝑑𝑑𝑇𝑇𝑖𝑖
𝜎𝜎𝑑𝑑𝑇𝑇𝑖𝑖

� (6) 

where 𝑖𝑖(𝐸𝐸) is the functionality of the road or bridge, t is time in days after the event, 𝜇𝜇𝑑𝑑𝑇𝑇𝑖𝑖  and 𝜎𝜎𝑑𝑑𝑇𝑇𝑖𝑖 are the mean and standard 194 

deviation associated with damage state dsi, and Φ(∙) denotes the standard normal CDF. The road and bridge restoration curves 195 

are shown in Figure 4. The means and standard deviations are shown in Table 4 and vary depending on the infrastructure type 196 

(road or bridge), the type of hazard (earthquake ground motion or tsunami inundation), and the degree of damage (slight, 197 

moderate, extensive, or complete).  198 

 199 

Fig. 4. Restoration curves for earthquake ground shaking (EQ) and tsunami inundation (TS) associated with (a) roads and (b) 200 

bridges. 201 

Table 4: Road and bridge restoration curve parameterization.  202 

  Road   Bridge  
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Damage 

State 

Earthquake 

Mean 

[days] 

Earthquake 

Std Dev. 

[days] 

Tsunami 

Mean 

[days] 

Tsunami 

Std. Dev. 

[days] 

Earthquake 

Mean 

[days] 

Earthquake 

Std. Dev. 

[days] 

Tsunami 

Mean 

[days] 

Tsunami 

Std. Dev. 

[days] 

Slight 0.9 0.05 1 0.05 0.6 0.6 1 0.5 

Moderate 2.2 1.8 3 1.5 2.5 2.7 4 2 

Extensive 21 16 20 10 75 42 30 15 

Complete 21 15 30 15 230 110 120 60 

 203 

To account for limitations in resources, the restoration curves were modified at both the regional and local scales. At the 204 

regional scale, restoration was prioritized according to the tiers shown in Figure 2. Each subsequent tier began restoration 205 

following all roads and bridges in the prior tier reaching a randomly sampled functionality level. Here, the necessary 206 

functionality level to begin restoration of the following tier followed a normal distribution with mean 0.5 and a standard 207 

deviation of 0.1. For example, if this value was sampled as 0.6, all Tier 1-Phase 1 roads and bridges must have reached 0.6 208 

functionality following the restoration curves of Figure 4 before any Tier 1-Phase 2 road segments began restoration. The 209 

assumption is that not all roads and bridges will begin being repaired immediately due to limitations in resources. Note that in 210 

this work, the mean of 0.5 and standard deviation of 0.1 were assumed; however, these values could be refined in future work 211 

based on regional preparation levels. That is, if a region has a good preparation level, then the parameterizing mean could be 212 

lower, thus indicating that subsequent tiers initiate their restoration process sooner.  The resulting average regional functionality 213 

across all 1,000 iterations at days 1, 60, 90, and 720 are shown in Figure 5.  214 
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 215 

Fig. 5. Restoration of regional road network. Average functionality, fR, of the regional roads and bridges is shown at (a) Day 216 

1, (b) Day 60, (c) Day 90, and (d) Day 720. fR = 0 is nonfunctional, fR = 1 is fully functional. 217 

At the local scale, the functionality of roads and bridges were modified based on accessibility to the maintenance facilities. It 218 

was assumed that communities rely on supplies from the maintenance facilities to repair their roads and that communities 219 

located further from their respective maintenance facility will take longer to receive these supplies. The standard functionality 220 

was thus modified for local roads as: 221 

 𝑖𝑖𝐿𝐿(𝐸𝐸) = 𝑖𝑖(𝐸𝐸) ∙ 𝛿𝛿𝑘𝑘 (7) 

where f was taken from equation (6) and 𝛿𝛿 was computed as: 222 

 𝛿𝛿(𝐸𝐸) =
𝑇𝑇(𝑜𝑜,𝑑𝑑),0

𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡
 (8) 

where 𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡 represents the travel time along the shortest path between origin o and destination d at time t. Here, the origin 223 

was taken as the maintenance facility and the destination as the community of interest. The reference time in the numerator is 224 

0, thus indicating pre-disturbance travel times. As the regional network recovers, the post-disturbance travel time in the 225 
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denominator approaches the pre-disturbance travel time and 𝛿𝛿 approaches 1. Values of 𝛿𝛿, thus, range between 0 and 1. The 226 

constant k in equation (7) was defined as: 227 

 𝑘𝑘 = �
0.5; 𝑇𝑇(𝑜𝑜,𝑑𝑑),0 < 1ℎ𝑚𝑚
1; 1ℎ𝑚𝑚 ≤ 𝑇𝑇(𝑜𝑜,𝑑𝑑),0 < 2ℎ𝑚𝑚𝑠𝑠
2; 𝑇𝑇(𝑜𝑜,𝑑𝑑),0 ≥ 2ℎ𝑚𝑚𝑠𝑠

 (9) 

With this formulation, the assumption behind k is that more trips can be made between communities closer to their maintenance 228 

facility than those located further. The values of k  were assumed; however, these could be refined in future work based on 229 

models that are dependent on resources available at the origin and destination. For example, if resources for repair are limited 230 

and prioritized by community, k can be a time dependent function that approaches 0 as resources are allocated from maintenance 231 

facilities to each community. Thus, when 𝑘𝑘 = 0, 𝛿𝛿 = 1, and the local functionality is taken directly from equation (6). The 232 

term 𝛿𝛿𝑘𝑘 introduces a one-way dependence of the local network restoration on the regional network restoration. The average 233 

local functionality at Newport across all 1,000 iterations at days 1, 60, 90, and 720 are shown in Figure 6.  234 

 235 

Fig. 6. Restoration of local road network for Newport. The average functionality of local roads and bridges at (a) Day 1, (b) 236 

Day 60, (c) Day 90, and (d) Day 720. fL = 0 is nonfunctional, fL = 1 is fully functional. 237 
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Functionality-Based Travel Time Surface 238 

The local and regional functionality of roads and bridges were then related to increased travel times along these segments. A 239 

commonly used relationship between travel times, traffic capacities, and traffic volumes is the Bureau of Public Roads (BPR) 240 

curve (Martin and McGuckin, 1998), computed as: 241 

 𝑇𝑇′𝑐𝑐,𝑇𝑇 = 𝑇𝑇𝑜𝑜,𝑇𝑇
′ �1 +𝛼𝛼 �

𝐸𝐸𝑇𝑇
𝑐𝑐𝑇𝑇
�
𝛽𝛽
� (10) 

where 𝑇𝑇′𝑐𝑐,𝑇𝑇 and 𝑇𝑇𝑜𝑜,𝑇𝑇
′  are the current and original travel times along segment s, 𝛼𝛼 and 𝛽𝛽 are constants typically taken as 0.15 and 242 

4, respectively, under normal flow conditions, and 𝐸𝐸𝑇𝑇 and 𝑐𝑐𝑇𝑇 are traffic volume and capacity, respectively, along segment s.  243 

It was assumed that immediately after the rupture of the CSZ, the traffic volume on the regional road network will initially be 244 

limited and gradually return to pre-disturbance conditions. The traffic volume, 𝐸𝐸𝑇𝑇, was modified by a traffic volume multiplier, 245 

𝜑𝜑(𝐸𝐸), which was defined as a normal CDF with a mean of 30 days and a standard deviation of 14 days. The traffic volume 246 

multiplier is similar to the restoration curves of Figure 4, in that a normal CDF is used to define a unitless curve that is a 247 

function time following the disaster. The traffic volume multiplier is simply used to reduce the traffic volume along road 248 

segment s. The parameterizing mean and standard deviation were assumed for this work and can be refined in future work 249 

based on output from post-disaster traffic forecasting models. The BPR curve in equation (10) was thus modified to account 250 

for reductions in traffic volume and regional road and bridge functionality, 𝑖𝑖𝑅𝑅, as: 251 

 𝑇𝑇′𝑐𝑐,𝑇𝑇 = 𝑇𝑇𝑜𝑜,𝑇𝑇
′ �

1
𝑖𝑖𝑅𝑅

+𝛼𝛼 �
𝜑𝜑 ∙ 𝐸𝐸𝑇𝑇
𝑖𝑖𝑅𝑅 ∙ 𝑐𝑐𝑇𝑇

�
𝛽𝛽
� (11) 

A normalized version of equation (11) is shown in Figure 7 as a function of 𝜑𝜑∙𝑣𝑣𝑠𝑠
𝑐𝑐𝑠𝑠

 and 𝑖𝑖𝑅𝑅. Each contour corresponds to values of  252 

𝑇𝑇′𝑐𝑐,𝑇𝑇/𝑇𝑇′𝑜𝑜,𝑇𝑇. Along the top axis, where 𝑖𝑖𝑅𝑅 = 1, the standard BPR curve of equation (10) is obtained. Along the leftmost axis 253 

where 𝐸𝐸 ∙𝜑𝜑 = 0, i.e., there is no traffic volume, the travel time is increased by 𝑇𝑇𝑜𝑜,𝑇𝑇
′ /𝑖𝑖𝑅𝑅. For example, a road or bridge that is 254 

50% functional results in double the travel time. This formulation accounts for a reduction in both traffic volume and road and 255 

bridge capacity. Alternative formulations to compute post-disaster traffic volumes and travel times exist such as gravity models 256 

and user-equilibrium traffic assignment (Shiraki et al., 2007; Guo et al., 2017); however, these were not implemented here as 257 

they require origin-destination trip assignments. The travel time surface was employed where traffic volume data is available, 258 

i.e., on the regional network. On the local networks, the travel time along a road segment was increased by 𝑇𝑇𝑐𝑐,𝑇𝑇
′ = 𝑇𝑇𝑜𝑜,𝑇𝑇

′ /𝑖𝑖𝐿𝐿.   259 
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 260 

Fig. 7. Travel time surface used to relate traffic volume, traffic capacity, and functionality of roads and bridges. Each contour 261 

corresponds to values of  𝑇𝑇′𝑐𝑐,𝑇𝑇/𝑇𝑇′𝑜𝑜,𝑇𝑇. 262 

Results of Application to a Transportation Network  263 

Whereas the previous section followed steps 1 and 2 of the generalized framework shown in Figure 1, this section follows step 264 

3. That is, the network is considered as a system, and both regional and local metrics are defined to evaluate the resilience of 265 

the transportation network at multiple spatial scales. Further, it is demonstrated how this framework can be used as decision 266 

support tool. 267 

Regional Connectivity Index 268 

The assumed role of the transportation network was to provide post-disaster aid to communities, and the location of airports 269 

were used as a proxy for supply sources. Airports take on the role of service origin and were grouped into 3 tiers as shown in 270 

Figure 2. To define accessibility from these supply sources to the coastal communities, or service destinations, a regional 271 

connectivity index, RCI, was created. The RCI is based on the concept of travel time resilience (Omer, 2011), and was defined 272 

as: 273 

 𝑅𝑅𝐶𝐶𝑅𝑅(𝐸𝐸) =  � 𝑤𝑤𝑗𝑗
min
𝑜𝑜𝑜𝑜𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑗𝑗

𝑇𝑇(𝑜𝑜,𝑑𝑑),0 

min
𝑜𝑜𝑜𝑜𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑗𝑗

𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡  
𝑗𝑗𝑜𝑜𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑇𝑇

 (12) 
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where 𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡 is the travel time along the shortest path between origin o and destination d at time t. At each time step t, the 274 

transportation network was updated according to the methodology outlined in the previous section, and the shortest path 275 

recomputed using this updated network. The python package NetworkX was used for computing the shortest path between 276 

nodes (Hagberg et al., 2008). Airports were taken as the origins whereas the communities were taken as the destinations. The 277 

time in the numerator is t = 0, thus indicating pre-disturbance travel times. Each airport tier was represented by the variable j, 278 

e.g., j=1, 2, and 3. The variable wj is a weight that represents the importance of airport tiers, and the summation of weights 279 

across all tiers is equal to one. The weights were included to prioritize airport tiers depending on interests and features such as 280 

runway capacity and local logistics. By formulating the RCI as such, each community’s index was normalized by their 281 

respective travel time under normal circumstances, e.g., pre-disturbance travel times. This metric thus helps identify which 282 

communities were furthest displaced from their pre-disturbance conditions. By tracking the RCI across time and considering 283 

the network recovery, each trajectory will re-approach 1, where the post-disturbance travel times are identical to the pre-284 

disturbance travel times.  285 

Figure 8 shows the RCI for Cannon Beach, Newport, and Port Orford for all 1,000 iterations and with equal weights across all 286 

three airport tiers. These three communities are in the north, central, and south coast respectively. The solid blue line indicates 287 

the average of all iterations at each time step, whereas the shaded region shows plus/minus one standard deviation. Figure 8c 288 

shows that on average, the RCI of Port Orford begins at approximately 0.18, thus indicating that across all airport tiers it takes 289 

about 5 times as long as the pre-disturbance travel time to access the community. The recovery trajectory shows that on average, 290 

the accessibility to Port Orford is fully re-established around 2.4 years after the CSZ. Conversely, the RCI of Cannon Beach 291 

begins on average at approximately 0.5, indicating that across all tiers the travel time to these airports is about doubled. Figure 292 

8 shows that on average Cannon Beach recovers approximately 1.75 years after the event. The low initial RCI and slower 293 

recovery time of Port Orford is due to its location within the larger regional network. The nearest Tier 1 and 3 airports are both 294 

located along Interstate 5 with no direct route to Port Orford, e.g., the shortest path is from either the south through California 295 

or north through Bandon.  296 

 297 
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Fig. 8. Regional Connectivity Index (RCI) for (a) Cannon Beach, (b) Newport, and (c) Port Orford. The grey lines correspond 298 

to each iteration of the Monte-Carlo simulation, the thick blue line is the average curve, and the shaded region indicates the 299 

plus/minus one standard deviation range. 300 

Perhaps counterintuitively, Figure 8 shows that some of the RCI trajectories see a slight reduction before monotonically 301 

recovering. This occurs during all iterations for Newport and a handful of iterations for Cannon Beach. This is due to the form 302 

of the travel time surface and tradeoffs between road restoration and increased traffic volumes as a function of time. Port Orford 303 

does not see these reductions in RCI as it is located along the south coast and the southern highways are prioritized later for 304 

restoration, e.g., after the traffic volumes are restored to pre-disturbance conditions.  305 

Uncertainty in the RCI trajectories of Figure 8 stem from both uncertainty in the initial road/bridge damage states and the tiered 306 

restoration process of the regional network. Further, correlations across road segment damage states was not considered here 307 

which contributes to the overall uncertainty when considering the network as a whole.  308 

Local Connectivity Index 309 

At the local scale, a local connectivity index, LCI, was introduced to measure the overall local network resilience. Similarly 310 

based on the concept of travel time resilience, the LCI was defined as: 311 

 𝐿𝐿𝐶𝐶𝑅𝑅(𝐸𝐸) = ���𝑇𝑇(𝑜𝑜,𝑑𝑑),0
𝑑𝑑∈𝑆𝑆𝑜𝑜∈𝑆𝑆

� ���𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡
𝑑𝑑∈𝑆𝑆𝑜𝑜∈𝑆𝑆

��  (13) 

where 𝑇𝑇(𝑜𝑜,𝑑𝑑),𝑡𝑡 is the travel time along the shortest path between origin o and destination d at time t. Nodes o and d are taken 312 

from a subsample of nodes, S, of the entire local network. The nodes that comprise S were randomly sampled during each 313 

iteration from the local network. A reduction factor was introduced that scales down the number of nodes within each local 314 

network, here taken as 32. So, for example, if a local network had 1,280 nodes, a reduction factor of 32 resulted in the subsample 315 

being comprised of 40 nodes. The shortest path between all possible combinations of these 40 nodes was computed. This 316 

reduced the number of origin-destination pairs from 818,560 to 780. Sensitivity testing, although not shown here, indicated 317 

that across all iterations the use of the reduction factor of 32 provided an accurate estimate of the mean LCI while significantly 318 

reducing computational costs. Use of the reduction factor did, however, result in increased uncertainty.  319 

The results of this LCI formulation for Cannon Beach, Newport, and Port Orford are shown in Figure 9. The dash-dot line 320 

indicates the mean LCI if damage to the regional network is not considered. For these three communities, the LCI starts near 0 321 

and recovers at different rates. The low initial LCI is driven by the network damage sustained by coastal communities as these 322 
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are closer to the CSZ and hazard intensity measures are larger. The results for Newport show similar reductions in LCI as that 323 

of the RCI from Figure 8. This is due to the one-way dependence of the local network on the regional network and accessibility 324 

to maintenance facilities. Similarly, Port Orford has a slow time to recover due the one-way dependence.  325 

 326 

Fig. 9. Local Connectivity Index (LCI) for (a) Cannon Beach, (b) Newport, and (c) Port Orford. The grey lines correspond to 327 

each iteration of the Monte-Carlo simulation, the thick red line is the average, and the shaded region indicates the plus/minus 328 

one standard deviation range. The dash-dot black line indicates the mean LCI when the regional network is not considered. 329 

Similar to Figure 8, uncertainty in the LCI trajectories of Figure 9 are due to the initial road/bridge damage states, no correlation 330 

across damage states, and the tiered restoration process of the regional network. Another source of uncertainty in the LCI is 331 

that a subsample of origin-destination nodes are employed, rather than the entire network.   332 

Considering both regional and local resilience 333 

Having established both the RCI and LCI, the status of the network at multiple scales was evaluated. Figure 10 shows the mean 334 

LCI and RCI at each time step plotted against each other for six of the eighteen communities. The results for the mean LCI and 335 

RCI for the three communities discussed in detail previously, Cannon Beach, Newport, Port Orford, are shown in 10a-c. Three 336 

more communities, Rockaway Beach, Lincoln City, and Toledo are shown in 10d-f to demonstrate differences in recovery 337 

trajectories. Both the RCI and LCI range between 0 and 1. Each marker corresponds to days 1, 30, 60, 180, 360, and 720. Four 338 

quadrants are identified in Figure 10. A trajectory that passes through the lower right quadrant indicates that the local recovery 339 

outpaces the regional recovery and thus a community may have reestablished their local network but remains isolated from the 340 

rest of the region. Conversely, a trajectory that passes through the upper left quadrant conveys the opposite. That is, the 341 

community is accessible from the rest of the region, but the local network has not been reestablished to the same level of 342 

functionality.  343 
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 344 

Fig. 10. RCI vs. LCI recovery trajectories for (a) Cannon Beach, (b) Newport, (c) Port Orford, (d) Rockaway Beach, (e) Lincoln 345 

City, and (f) Toledo. 346 

Of the communities shown in Figure 10, Port Orford (10c) has a regional recovery that initially outpaces the local recovery, 347 

thus indicating that aid from the airports may be able to reach the community, however the local network is still not repaired 348 

to the same level of functionality. Conversely, Toledo shown in panel 10f, exhibits the opposite trend. That is, the local recovery 349 

outpaces the regional recovery, indicating that the local network is recovering quicker; however, the community has poor access 350 

to the airports throughout the region.  351 

Both Cannon Beach (10a) and Newport (10b) show a robust initial RCI compared to the LCI. For both communities, the regional 352 

recovery is initially slow while the local network is being repaired. The dips in the RCI and LCI that were previously identified 353 

for Newport are shown in Newport’s trajectory, as both the RCI and LCI decrease around day 30 before beginning a monotonic 354 

recovery. 355 

Rockaway Beach (10d) and Lincoln City (10e) show recovery trajectories that are both near to a 45-degree line, indicating that 356 

the regional and local connectivity indices are on pace with each other. While these trajectories appear nearly identical, the 357 

temporal component to these plots should be considered. Whereas Lincoln City is approaching a full recovery around day 180, 358 

Rockway Beach is only halfway recovered.  359 
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The recovery trajectories of the six communities shown in Figure 10 emphasize how communities recover not in isolation from 360 

the rest of the region, but in concert with the regional network. Aside from Toledo (10f), the local recovery of the communities 361 

shown in Figure 10 are highly dependent on the recovery of the regional network. That is, the regional recovery either outpaces 362 

or is in line with the local recovery. This further emphasizes the need for local networks to be considered in a larger network 363 

following regional disasters.   364 

The RCI and LCI can further be used to determine the time until a community returns to some index threshold at both the 365 

regional and local scales. Figure 11 shows, for all 18 communities, the time until: (a) the RCI exceeds 0.75, (b) the LCI exceeds 366 

0.75, and (c) both the RCI and LCI exceed 0.75. The selection of the value of 0.75 is subjective and was selected as this 367 

corresponds to travel times that are 1.33 times longer than pre-disturbance conditions and are thus approaching “near-normal”. 368 

While not shown here, a sensitivity analysis indicates that regardless of whether 0.7, 0.75, 0.8, or 0.9 are chosen as an 369 

exceedance threshold for the LCI/RCI, the relative comparisons across communities remain similar.  The figure is oriented 370 

such that each community is shown from north (Astoria-Warrenton) to south (Brookings). Uncertainty is quantified via violin 371 

plots, which are nonparametric distributions of all 1,000 iterations. The mean time until exceedance is shown via the markers.  372 
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 373 

Fig. 11. Time in years required for the connectivity index to exceed 0.75 for the (a) RCI, (b) LCI and (c) joint RCI and LCI.  374 

Dots indicate the mean time to exceed 0.75.  375 

Considering the time until the RCI exceeds 0.75 in Figure 11a, notable trends between the location of a community within the 376 

regional network and the time to recover can be obtained. The faster recovering communities are either (1) located along a Tier 377 
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1-phase 2 road, e.g., Astoria-Warrenton, Tillamook, Lincoln City, Florence, and North Bend-Coos Bay, or (2) the connecting 378 

roads to the rest of the region are not located along the coast, e.g., Bandon and Brookings. A handful of these communities 379 

share both features. For example, Astoria-Warrenton is located at the tail of a Tier 1-phase 2 road that does not run directly 380 

along the coast and, subsequently, results in the fastest regional recovery. It is interesting to note that although a community 381 

may be located on a Tier 1-phase 2 road, this does not necessarily guarantee a fast recovery, e.g., Newport. This is due to the 382 

connecting roads being located along the coast and thus subject to larger hazard intensity measures.  383 

Figure 11c shows that Astoria-Warrenton has the quickest average joint time to recover followed by Florence, Brookings, and 384 

Lincoln City. The fast recovery of Astoria-Warrenton is driven by the regional recovery, and at the local scale by the 385 

maintenance facility located within the urban growth boundary. Because there is a maintenance facility located within the urban 386 

growth boundary, the local restoration follows the HAZUS restoration curves exactly.  387 

Similar to Astoria-Warrenton, Florence is located at the tail of a Tier 1-Phase 2 road and exhibits a fast recovery. Compared to 388 

the neighboring communities, Waldport and North Bend-Coos Bay, the recovery of Florence is significantly faster. This is 389 

driven by a couple of factors. On one hand, Waldport is only accessible via Tier 3 and undefined roads, thus the regional 390 

recovery is slow. This is apparent in Figure 11a, as the mean regional time to recover for Waldport is approximately 2 years 391 

compared to less than a year for Florence. South of Florence, North Bend-Coos Bay is also situated on a Tier 1-Phase 2 road 392 

and can be seen to have a similar regional recovery time. However, the local recovery of North Bend-Coos Bay is nearly a year 393 

longer than that of Florence. This variation in local recovery between the two communities is due to Florence and North Bend-394 

Coos Bay being in different maintenance facility districts (Table 1 and Figure 2). In this case, Florence has better accessibility 395 

to the assigned maintenance facility C, compared to that of North Bend-Coos Bay which is assigned maintenance facility D. 396 

The community of Brookings has a quick average recovery time because of the Tier 2 airport located within the urban growth 397 

boundaries, and the community is not subject to liquefaction. Because of the latter, only the tsunami hazard impacts the 398 

performance of the local road network.  399 

Each of the coastal communities can be delimited as north-coast (Astoria-Warrenton to Tillamook), central-coast (Lincoln City 400 

to Florence), and south-coast (North Bend-Coos Bay to Brookings). Considering these groupings, trends in time to recover can 401 

be identified. For example, amongst the north-coast communities, Gearhart-Seaside to Tillamook have similar recovery times 402 

whereas Astoria-Warrenton recovers nearly a year before. For the central-coast, both Lincoln City and Florence recover faster 403 

than the other four communities. And for the south-coast, Brookings recovers faster. The fast recovery time of these four 404 

communities within their respective north-, central-, south-coast distinctions could indicate that these communities be used as 405 

coastal hubs for post-disaster restoration efforts.  406 
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Decision Support  407 

Two variations in how this framework can be used as a decision support tool are shown in Figure 12. Figure 12a shows how 408 

the weighting parameter of equation (12) impacts the mean time to the restore the RCI to 0.75. The points corresponding to 409 

‘All Tiers’ are the same as the mean values from Figure 11a in which all airport tiers were weighted equally. The points labeled 410 

‘Any Tier’ correspond to the minimum time for the RCI to exceed 0.75 considering each airport tier individually. Interestingly, 411 

north coast communities see little to no variation when considering each airport tier individually. Conversely, the central and 412 

south coast communities do see deviations, indicating that they may be accessible to certain airports but not to all. Tier 2 and 413 

3 airports are located along the coast in some central and south coast communities. Thus, if these airports can accommodate 414 

post-disaster needs, the south coast communities may recovery just as fast, if not faster, than the north coast communities.  415 

 416 
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Fig. 12. Example of using framework as a decision support tool: (a) time for the RCI to exceed 0.75 considering different 417 

airport tier weightings, and (b) time for the LCI to exceed 0.75 under both status quo conditions and with additional maintenance 418 

facilities  419 

Figure 12b shows the effect that adding additional maintenance facilities has on the time to restore the LCI to 0.75. This further 420 

highlights dependencies between the regional and local networks in that the maintenance facilities located throughout the region 421 

have an impact on local network restoration. In addition to the four maintenance facilities shown in Figure 2, three additional 422 

facilities were added to the network in the communities of Wheeler, Toledo, and Port Orford. Figure 12b shows the mean time 423 

until the LCI exceeds 0.75 for both the status quo conditions, e.g., the same points shown in Figure 11b, and with the addition 424 

of three new maintenance facilities. The beneficial effect that a new maintenance facility in Port Orford has on the south coast 425 

communities is apparent as these communities see a reduction in the time until the LCI exceeds 0.75. North coast communities, 426 

Manzanita-Nehalem-Wheeler, and Cannon Beach see improvements with the addition of a maintenance facility in Wheeler. 427 

The remaining communities do not see as much of an improvement either because they already have a short time to recover, 428 

or their assigned maintenance facility is the same as the status quo conditions.  429 

Discussion 430 

The methodology that was developed can be used to aid discussions in mitigation planning along multiple fronts. First, due to 431 

increases in travel time that may result from natural hazards, individuals residing in communities may face a sense of 432 

“islanding” or isolation from the rest of the region or their local community. For example, if the travel time between two 433 

communities begins to increase beyond expectations, e.g., what used to be a one-hour trip now takes five-hours, individuals 434 

may feel isolated from the rest of the region. Planning guides have alluded to this concept without explicitly defining what 435 

constitutes an “island” (CH2M Hill, 2012; CREW, 2013; OSSPAC, 2013). The RCI and LCI could serve as means to quantify 436 

this. For example, decision makers may identify that if a community is below a threshold of 0.2, e.g., a five-times increase in 437 

travel time relative to pre-disturbance conditions, then this establishes an island. Further, rather than a connectivity index, an 438 

islanding index could be formulated, e.g., one minus the RCI or LCI, to define the severity of islanding.  439 

In addition, results from this methodology emphasize the necessity of considering post-disaster performance and restoration of 440 

local networks within a larger regional setting. Use of restoration curves without consideration given to regional-level 441 

restoration efforts may lead to underpredicting the time to recover. It was shown that by applying HAZUS restoration curves 442 

without regional considerations, the LCI will approach 90% recovery within a couple of months. With regional considerations, 443 

the framework presented here estimates a recovery times well beyond 1-year for most coastal communities. Future research 444 

could aim to refine the post-disaster dependencies and interdependencies of local networks within larger regional settings.  445 
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Some assumptions to implement the methodology were made. First, no damage to airports were considered, and it was assumed 446 

that temporary measures were employed to quickly resume operations. This has been observed for air traffic control towers in 447 

prior earthquakes (e.g., Almufti et al., 2014). Damage to airports could however be considered in future work by using airport 448 

fragility curves and restoration functions similar to those used for roads and bridges. Further, assumptions in the restoration 449 

process were made. To account for limitations in resources at the regional scale, the restoration curves were modified by 450 

assuming that the restoration of higher priority tiers needed to reach a randomly sampled functionality level. Alternative 451 

approaches for quantifying the restoration of infrastructure systems exist and could be employed in future work (Costa et al., 452 

2021; Wang and van de Lindt, 2021). Further, the traffic volumes on the road network were assumed to be zero immediately 453 

after the event and slowly recover to pre-disturbance conditions. Alternative approaches to account for post-disaster traffic 454 

volumes exist and could also be incorporated (Dong et al., 2016; Guo et al., 2017). Minor assumptions include both the location 455 

of maintenance facilities and the grouping of nearby communities into one large community, e.g., Astoria-Warrenton and 456 

Gearhart-Seaside.  457 

Despite these assumptions, the framework can still aid stakeholders in mitigation planning. As the recovery of infrastructure 458 

systems following disasters involve multiple actors that do not follow physical laws, there is large uncertainty and complexity 459 

regarding both accurate and precise estimates of the time it takes to recover. As such, this framework is not intended to be 460 

predictive in the sense that other models of physical processes may be. Rather, the framework is intended to be used to make 461 

comparisons of local versus regional resilience of a given community, e.g., community A is more regionally resilient than it is 462 

locally resilient, and comparisons across communities, e.g., community A is more regionally/locally resilient than community 463 

B. 464 

In addition to addressing the limitations, future work could also include considering a larger transportation network that extends 465 

both further east and into neighboring states. A multi-state network may aid in a more concerted efforted to reduce the impacts 466 

of large-scale events. Additionally, critical facilities such as fire stations and hospitals are employed in disaster research and, 467 

while important, overlook what community members may value. Thus, this work has the potential to be expanded beyond an 468 

engineering perspective to a larger interdisciplinary perspective. Similar to how previous work has considered equitable access 469 

to various services via transportation networks (Logan and Guikema, 2020), interview data of what community members value 470 

could be transcribed to geospatial locations and employed within this methodology to determine how accessible these locations 471 

are for members of a community.  472 

Conclusions 473 

This paper presented a multi-scale framework for simultaneously assessing the regional and local resilience of infrastructure 474 

networks following disruptions from natural hazards. The framework is intended to be expandable across different types of 475 
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infrastructure networks. A methodology was developed from the generalized framework to demonstrate how it can be applied 476 

to a road and highway transportation network under disruption from a multi-hazard Cascadia Subduction Zone earthquake 477 

ground shaking and tsunami inundation scenario. By using airports as proxies for the location of supply sources, the application 478 

of this methodology provides insights into the resilience of the transportation network at multiple spatial scales. Considering 479 

the problem under a multi-scale lens results in both regional and local metrics related to increases in travel times. The regional 480 

metric of a community, the RCI, considered accessibility from the community boundaries to airports, whereas the local metric, 481 

the LCI, considered accessibility within the urban growth boundary of the community itself. Comparing the two metrics 482 

together provides insights as to how a community fares immediately after an event and during the recovery process at both 483 

spatial scales.  484 

By developing a methodology for a transportation network from the generalized framework, several conclusions can be 485 

obtained: 486 

1. The post-disaster performance and recovery of local networks should be considered in the context of a larger regional 487 

network: The methodology incorporated a one-way dependence of the restoration of local networks on access to 488 

resources within the regional network. By comparing the results in this paper to previous work in which regional 489 

networks were not considered, the time to recover for a single community was shown to be four-times longer than 490 

previously estimated. Further, the recovery of local networks was shown to vary across communities, indicating that 491 

communities are sensitive to where they are situated within the regional network.  492 

2. Attributes that lead to regional and local resilience differ: It was shown that regionally resilient communities are not 493 

guaranteed to be locally resilient and vice-versa. Communities with a fast regional recovery had access to roads that 494 

were both identified as higher priority for restoration and located in areas that are subject to smaller hazard intensity 495 

measures. Communities with a fast local recovery were shown to be highly dependent on access to maintenance 496 

facilities. In addition, select communities were shown to have attributes that led to a faster recovery relative to 497 

neighboring communities and could potentially serve as hubs for restoration efforts.  498 

3. Implementation of mitigation options should be strategically considered and do not guarantee an improvement in the 499 

time it takes to recover: It was shown that adding additional maintenance facilities impacted some communities while 500 

others saw little to no improvements. In this work, communities that are more rural saw improvements in time to 501 

recover when an additional maintenance facility was added in the region. Conversely, communities closer to 502 

metropolitan areas saw minimal improvement.  503 

 504 
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